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Abstract—Solution of the transient response of intrinsic thermocouples by Henning and Parker are
expanded to include temperature dependent properties. Finite difference and Runge-Kutta numerical
solutions are compared with the analytical solution. Results for thermocouples for which the temperature
variability is significant are presented. The approach allows the calculation of large temperature steps.

An experimental method is described by which large step temperature increases can be simulated. The
method also allows for large dimension substrate and thermowire, which reduce errors and slow-down

real time performance to simplify measurements.

Experiment and calculations agree well after the very initial response. It is suggested that the experiment
described is suitable for the measurement of the prompt response of intrinsic thermocouples.

NOMENCLATURE

a, dimensionless parameter, = 1/(1+ 5/2./7);

C,, specific heat;

G, correction factor in [1];

k, thermal conductivity;

R, radius of wire;

8 radial coordinate;

r*, dimensionless radial coordinate, = r/R;

S, temperature in substrate;

§*,  dimensionless temperature in substrate,
=(§—T)So—Ts);

So,  initial elevated temperature of substrate;

T, temperature in wire;

T*, dimensionless temperature in wire,
=(T—-T,)/(So—T.);

T,, ambient temperature;

t, time;
t*,  dimensionless time, = to,/R?;
X, axial coordinate in wire from substrate;
x*  dimensionless axial coordinate in wire,
= x/R.
Greek symbols
a, thermal diffusivity;
B, ratio of conductivities, = k,,/k;
¥, ratio of thermal diffusivities, = a.,,/;
6 temperature of junction wire-substrate;

0* dimensionless temperature of junction,
=(0-T,)(So—Ty);

0, density;

o, coefficient of linear variable conductivity.

INTRODUCTION
THE PROBLEM of intrinsic thermoelements has been
dealt with intensively. Henning and Parker [1] derived
and solved a theoretical model and performed experi-
ments. More recently, Bickle and Keltner [2, 12] did

*Present address: ORNL, Oak Ridge, TN, US.A.
tPresent address: Tennessee Valley Authority, Chatan
ooga, TN 37401, US.A.

an extensive study, reviewed and summarized previous
work, as well as developed means for analyzing
temperature—time responses of intrinsic (and other)
thermoelements [3]. The advantages of intrinsic
thermocouples for the measurement of temperature
transients, particularly in the case of internal heating
are overwhelming. The partially zero order response,
i.e. instantaneous step output for a step input, make
them indispensible for short time reactions.

For systems with potential fast transients of large
amplitude such as nuclear reactors, the immediate
information of the exact real temperature is vital.
Crucial immediate decisions must be made based on
temperature data. Intrinsic thermocouples are particu-
larly suited to accomplish the measurement of rapid
transient surface temperature change of conducting
solids. Many mechanical systems subject to tempera-
ture transients are constructed of conducting solids—
making the intrinsic thermocouple an essential tem-
perature sensor.

The previously mentioned works use essentially the
same basic model, as is done here. In the previous
models the heat conduction is assumed to be tem-
perature independent and constant. Parker and
Henning limit their analysis to small temperature
steps of about 50°F. Within such a temperature range
and with an empirical correction factor they use (“G”)
and the modification of Giedt and Nunn [1] results
are satisfying. Bickle and Keltner are not limiting the
temperature span. They developed the “deconvolution”
[2,4] method which is essentially a time increment
calibration method. Since it is a calibration method,
it will compensate for all changing variables, but may
require a somewhat elaborate calibration.

The present paper expands the Henning and Parker
model to include temperature dependent properties.
However, all of the emphasis is put on the variation
of the thermal conductivity with temperature. The heat
capacity per unit volume, pC,, varies little for metals
[1]. The solution required a numerical approach. The

1337



1338

numerical method allows the variation of properties
other than the thermal conductivity as necessary. A
measurement technique is presented which is not
limited to electrical discharge, as in the previous work.
The preheated element enables essentially unlimited
temperature steps at almost perfect step functions. The
hitherto limitations of size, due to limited energy
storage and step discharge ability have been overcome.
It is possible to determine the prompt response as well
as the dynamic response with relative simple means.

THEORETICAL MODEL AND NUMERICAL METHOD
The theoretical model is discussed in [1,2]. The

governing equation for the substrate (fuel element) is:
as* d*8*
arx  orx?

2 dS*
r* o’

(n

In deviation from the previous derivations we con-
sider only a single wire for which only axial conduction
is permitted:

oT* o02T*

FEaRerCh &

In the case of two wires there will be a separate equation
(2) for each wire. The net thermoeffect will be a resultant
of the combined partial e.m.f’s of each wire in contact
with the substrate [5].

The boundary conditions assume a step temperature
change in the substrate from S, to S, at time 0.

Sto=T%=T*=0 3
The heat flux at the interface, assuming the half

sphere under the thermowire has neither heat capacity
nor resistance to energy transfer yields:

as*|  roT*
ar* . T2 8x*

and the wire temperature at great distance from the
junction does not change:

T*(z, o0) = 0. (6)

©)

t,0

The analytical solutions assuming constant conduc-
tivity were presented by Parker and Henning [1].

To enable a variable thermal conductivity coefficient
a numerical approach was used. Two solution methods
were applied and compared. The thermal conductivity
is assumed to vary linearly with temperature. The finite
difference method utilized first central finite differences
for the space derivations and first forward finite differ-
ences for the time derivative.

T;’+1,n_ 7;,"
At

kOw_' ¢w(’1;,n - Sao) [Tt:,n—

pwcpw

1= 2T+ Tins
(Ax)?

_ d’w (7;,»+1_7;',n—1)2 (7)
PwCpw 2Ax
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and for the heat flux at the interface:

27 2
k‘z"(R 2)( & ) b R( )
=p,c ps%ﬂ<R+A> (SH-II— ;l)
2
Tiv1,0—To 2(81,2— 81,1
X (——————At )%ksnR (————Ar )

T o—T,
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X

The stability criterion applied was [6]
a, At/(Ax)? = a,At/(Ar)? =

pwcpw

025. (10)

The equations were programmed and numerical solu-
tions, discussed later, obtained [7, 8].

The second method applied was the Runge-Kutta.
First central finite differences for the space derivations
were used to form a set of time dependent first order
differential equations. Available subroutines in the
IBM 360/65 were used for the numerical solutions. The
stability criterion for the Runge-Kutta was chosen to
be 0-25 rather than 0-7 which would have been sufficient
[91. High order terms were neglected.

The thermal conductivity was assumed to vary
linearly between known points. It was amazing to
discover a wide spread of properties data in the
literature for the different materials. For varied prop-
erties data an arbitrary decision was made as to which
data to use. Material properties are summarized in
Table 1.

EVALUATION

Figures 1 and 2 show the results of the calculations
for constant properties in comparison to the analytical
solution. It is obvious from these figures that the finite
difference results and the Runge-Kutta calculations
with 1000 equations yield satisfactory results as com-
pared with the analytical model except at the very
beginning. All the later calculations were made with
the finite difference and Runge—Kutta method with one
thousand differential equations. It may be worthwhile
noting that the initial numerical evaluations tend to
yield lower temperatures than the analytical calcu-
lations. It has been shown by Henning and Parker
that the uncorrected analytical results tend to be
initially higher than experimental results [1].

The efforts were concentrated on the cases in which
the change in the coefficient of conductivity are of
significance. As expected the effect of the temperature
dependent conductivity is more pronounced the more
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$Used from room temperature.
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Copper wire on copper substrale
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and Runge-Kutta results),

the coefficient of conductivity is temperature depen-
dent. The effect diminishes for small temperature steps,
as has been shown previously {1].

The largest effect was found in the combination of
a Platinum wire on an Inconel substrate. For a 250°C
temperature jump the difference between constant and
variable conductivity is up to 10°C or about 5 per cent
{Figs. 3 and 4). Significant differences are accounted
for in cases of copper wire on a constantan substrate
(Fig. 5). These are material combinations which are
likely to be used and are therefore of applied interest.
In other cases such as copper on steel the effect of
variable conductivity diminishes in the error of the
calculations.
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Platinum  wire on Inconel substrate
Temperature step change 20-270°C
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FiG. 4. Temperature difference (analytical results minus
finite difference and Runge—Kutta).
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touches simultaneously. Between successive experi-
ments the wire was allowed to cool down to room
temperature. The temperature of the substrate at the
touching point was checked with a bead iron—
constantan thermocouple and found in good agreement
with the results of the copper—constantan couple.
Each experiment was repeated several times, there
were only minor differences between the different runs.
Occasionally an experiment registered lower tempera-
tures than several others. This was attributed to poor
thermal contact. Experiments were repeated until
several results converged at the high temperature, while
only a few were scattered at lower temperatures.
The described arrangement and procedure simulate
well a step heating of the substrate. The substrate is
preheated to a predetermined temperature. When
touched with the cold wire the heating of the junction

Copper wire I-5¢mm on constantan substrate
Temperature step change AT= 240°C

Finite difference (varigble conductivty)

Analytic (constant conductivity }
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Y, s
Fi16. 5. Dimensionless thermocouple junction temperature.
EXPERIMENT

Experiments were performed with substrates made
of 14 mmdia chromel, 10mm alumel and 6 mm con-
stantan (see Acknowledgement). The experiment util-
izing the constantan bar is described in detail. A
cylinder of about 6 cm length was flattened on one side
to create a flat face on one side of 4mm width along
the cylinder. The flat face was polished. At one end
of the cylinder a constantan wire was fitted into a
central hole and hammered in. The other end of the
cylinder was put into the cavity of a soldering iron
to be heated.

A 1-5-mm dia copper-wire was flattened and polished
at the end. The other copper-wire end, and the con-
stantan wire, were connected to a plotter. The plotters
abscissa had a time base of 1-5cm/s. A schematic
drawing of the experimental set-up is depicted in
Fig. 6.

The copper wire was hand held and touched to the
flattened side of the constantan substrate at a pre-
determined position. Special care was taken to touch
the wire perpendicularly so that the full cross-section

and the measurement begin simultaneously. The rela-
tive large dimensions of substrate and wire provide
several advantages. The most prominent advantage is
the slow-down of the transient in real time. The large
diameter wire reduced secondary effects such as lateral
heat losses. The substrate as a whole is essentially at
steady state. Electrical (heating) and other transients
are avoided. All these advantages provide for an
accurate undisturbed measurement, at almost any
temperature step.

Results for copper wire and constantan substrate
along with the results of the calculations are shown
in Fig. 5. The dimensionless temperature was calculated
by assuming the temperature reached steady state at
about 20s, which corresponds to a dimensionless time
of 55. This time period is not sufficient to achieve real
equilibrium corresponding to the model assumptions.
However, at such a time a steady state is reached which
is due to lateral losses from the wire and the effect
of the final dimensions of the substrate. Thus the results
for the experiment are shown too high to agree with
the theoretical results. It has been shown previously [1]
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]

Plotter

Substrate

FIG. 6. Schematic of the experiment.

that the initial experimental results tend to be lower
than the calculated results. The theoretical “a” value
for copper constantan is 0-32. The extrapolated prompt
response is about 0-30 with an estimated error of 0-01.

CONCLUSIONS

The numerical approach to the solution of the
transient response of intrinsic thermocouples is satis-
factory. Both the finite difference and the Runge~Kutta
methods compare well with the analytical solution. The
numerical approach enables the inclusion of properties
variability with temperature. The numerical approach
enables the calculation of large temperature steps in
which the change of the material properties is sig-
nificant. For some material combination the difference
in the calculated actual temperature is of the order of
several percent.

The Runge-Kutta method with sufficient number of
equations—here 1000—is superior to the finite differ-
ence method for a well defined geometry and semi-
infinite substrate. The finite difference method enables
to account for less defined geometries, as may occur
in actual cases. Finite difference method also allows
to improve the model with respect to the- half sphere
under the wire [12].

The experiment supports the theoretical model.
Except at the very beginning, where all uncorrected
calculations predict a higher temperature than actual,
results compare well with the numerical calculations.
Deviations in the approach to steady state temperature
are attributed to secondary losses which the model
does not account for.

The initial disagreement of experiment and calcu-
lation may be attributed to the fact that the model
neglects the half sphere under the wire. The model
thus simulates a larger area through which heat is
transferred than actually available. The model also does
not account for the heat required to sustain the tem-
perature of the neglected half sphere. Both effects con-
tribute to a higher calculated temperature than the
measured temperature. The high experimental tem-
perature shown in Fig. 5, as compared to the finite
difference calculated temperature, is due to the normal-

ization of the temperature scale assuming the terminal
temperature (# = Sy) has been reached in the finite
time of the experiment at no losses to the environment.
The described experimental method is useful in
simulating large temperature steps. The method enables
to use large dimension substrate and wire, which in
turn slow down the actual time response thus simpli-
fying the experimental set-up and improving accuracy.
With an improved attachment method, e.g. mechan-
ical rather than hand held, and improved environ-
mental control, the prompt response of intrinsic
thermoelements could be measured accurately. Lateral
insulation of substrate and wire will better simulate
the model throughout the range. The insulation im-
portance increases the larger the temperature step.
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L’ INFLUENCE DES PROPRIETES DEPENDANT DE LA TEMPERATURE SUR LES
MESURES EN TRANSITOIRE A L’AIDE DE THERMOCOUPLES INTRINSEQUES

Résumé—La solution de Henning et Parker de la réponse transitoire des thermocouples intrinséques
est étendue au cas de propriétés dépendant de la température. Les solutions numériques de différences
finies et de Kutta-Runge sont comparées a la solution analytique.

Des résuitats sont présentés pour des thermocouples dont les variations de température sont importantes.
La méthode permet de calculer de grands écarts de température.

Une méthode expérimentale est décrite qui permet de simuler des échelons importants de température.
La méthode permet aussi de grandes dimensions de support et de fil, qui réduisent les erreurs et ralentissent
le temps réel de fonctionnement ce qui simplifie les opérations de mesure.

Les expériences et les calculs se trouvent en bon accord aprés la réponse initiale elle-méme. Il est suggéré
que l'expérience décrite est adaptée a la mesure de la réponse rapide des thermocouples intrinséques.

EINFLUSS TEMPERATURABHANGIGER EIGENSCHAFTEN BEI INSTATIONAREN
MESSUNGEN MIT EIGENLEITENDEN THERMOELEMENTEN

Zusammensfasang —Die Deutung instationirer Mefergebnisse von eigenleitenden Thermoelementen
durch Henning und Parker wird auf temperaturabhéingige Eigenschaften ausgedehnt. Losungen mit kleinen
Differenzen und numerische Runge-Kutta-Losungen werden mit analytischen Losungen verglichen.
Ergebnisse von Thermoelementen, fiir die die Temperaturverdnderlichkeit kennzeichnend ist, werden
aufgefithrt. Das Vorgehen erlaubt die Berechnung von grofien Temperaturintervallen. Eine experimentelle
Methode wird beschrieben, bei der groBe Schritte der Temperaturzunahme simuliert werden konnen.
Die Methode gestattet grofe Abmessungen bei Substraten und Thermodrihten, die die Fehlermoglich-
keiten reduzieren und das Realzeitverhalten verlangsamen, was die Messungen vereinfacht. Versuch und
Rechnung stimmen nach den allerersten MeBwerten sehr gut iiberein. Es wird darauf hingewiesen, daB
der beschriebene Versuch sich zur Messung des unmittelbaren Ausgangssignals von eigenleitenden
Thermoelementen eignet.

BJIUSTHUE CBOMCTB, 3ABUCAUIMX OT TEMIIEPATYPBI, HA
KPATKOBPEMEHHOE U3MEPEHHUE C INTOMOIIBIO TEPMOIIAPEIL,
BBEJEHHOMW BHYTPH TEJIA

Ammotamus — [1poGiiemMa u3yveHHs YyBCTBHTEIBHOCTH TEPMONAD, BBEOCHHBIX BHYTPh TeNa, XCHHH~
HoM M [TepkepoM NOTIOTHEHA H3YYEHHEM CBOMCTB, 3aBHCAILUX OT TEMIEPATYPHL

PelueHns, nojiyYeHHBIE METOXOM KOHEYHBIX Pa3HOCTeH M YHMCIEeHHBIM MeTomoM PyHre-Kyrra,
CPaBHHBAJINCH ¢ AaHATATHYECKHM DEIICHHEM.

IlpeacraBneHsbl pe3ybTATHI H3IMEPEHHS 3HAYMTEIBLHBIX TEMIEPATYPHBIX KoJlebaHuil NPH NOMOILH
TepMonap.

C noMOLBIO aNNpPOKCHMALIHH BO3MOXEH pacyeT GOJBIUMX CKAaYKOB TemnepaTypel. Onucan
IKCMIEPUMEHTABHBIA METOM, ¢ MOMOIUBIO KOTOPOrO MOXHO MOJETHPOBaTh NOJiyYeHHE GONbLINX
CKAYKOB TEMIIEPATYPEI.

Jns ynpolueHHs H3IMEPEHHN B METOIEC PEKOMEHAYETCA HMCIOJB30BATh MOANOXKY H IPOBOJIOKY
GONBIIAX Pa3MEPOB, YTO YMEHbLIAET OLIMOKH M 3aMeJIfeT peatbublil Ipolecc H3IMEPEHH,

DKCHEPHMEHTHI M PacueT cpa3y INOKa3aiH XOpOILUee COrIacHe.

TIpeanonaraeTcs, ¥TO ¢ MOMOLIBIO OIMHCAHHOIO KCIEPUMEHTd MOXHO H3MEPATh MTHOBEHHYIO

PEaKLHIO TEPMONAP, BBEACHHBIX BHYTPh Tea.



